Development and error analysis of nonlinear ionospheric removal algorithm for ionospheric electron density determination using broadband RF data

نویسندگان

  • E. H. Lay
  • S. Close
  • P. Colestock
  • G. Bust
چکیده

[1] The first documented, empirical comparisons are provided of four methods to retrieve total electron content (TEC) that use broadband, impulsive events detected by satellite in the lower very high frequency range (20–150 MHz). The four TEC retrieval methods are the quasi‐longitudinal approximation (i.e., Taylor expansion) of the Appleton‐Hartree (A‐H) dispersion relation to the first and second orders, as well as the nonlinear ionospheric removal algorithm (NIRA) that utilizes the A‐H dispersion equation directly to model the propagation of an electromagnetic wave through the ionosphere. NIRA solves not only for TEC between the ground source and satellite, but also for higher‐order ionospheric terms, such as electron density, ionospheric thickness, and angle between wave vector and magnetic field. Regimes of validity for each TEC retrieval method are analyzed by comparison of the parameters retrieved from synthetic data with a known ionosphere and from RF FORTE satellite data measurements of a ground‐based broadband transmitter. Results include a comparison between TEC and infinite frequency time of arrival (to) determined by NIRA and determined by using the first‐ and second‐order terms from the Taylor expansion of the A‐H equation. Plasma density, ionospheric thickness, and angle between magnetic field and wave vector as determined by the two NIRA methods are also compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets

Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...

متن کامل

Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement

  The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm

[1] With the advent of the Global Positioning System (GPS) measurements (from both ground-based and satellite-based receivers), the number of available ionospheric measurements has dramatically increased. Total electron content (TEC) measurements from GPS instruments augment observations from more traditional ionospheric instruments like ionospheric sounders and Langmuir probes. This volume of ...

متن کامل

Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps

Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011